Un esperimento di entanglement quantistico per lo studio dello spaziotempo

Il Giornale Online
di Corrado Ruscica

Alcuni fisici hanno proposto un esperimento per verificare quali sono le previsioni della meccanica quantistica quando si tenta di descrivere le proprietà dello spaziotempo. La proposta arriva da un gruppo internazionale di ricercatori provenienti dalla Svizzera, dal Belgio, dalla Spagna e da Singapore e si basa sulla disuguaglianza denominata “hidden influence inequality”.

“Siamo interessati a capire se possiamo spiegare alcuni fenomeni fisici senza sacrificare il nostro senso comune delle cose che avvengono in uno spaziotempo continuo e regolare a cui siamo abituati” spiega Jean-Daniel Bancal del Centre for Quantum Technologies. Il fatto interessante è che sembra esistere una prospettiva reale per realizzare un tale esperimento. Sin da quando venne introdotta agli inizi degli anni ’20, la teoria dei quanti prevede un comportamento bizzarro delle particelle elementari, come ad esempio l’entanglement quantistico di due particelle che si comportano come se fossero una sola anche quando si trovano a grandi distanze. Questo fenomeno sembra violare il nostro senso comune di causa ed effetto, un comportamento che i fisici chiamano ‘non locale’. Inizialmente fu Einstein che mise l’attenzione sulle preoccupanti implicazioni di quanto previsto dalla meccanica quantistica e che egli stesso definì come “una azione a distanza che fa accapponare la pelle”. Negli anni ’60, John Bell propose il primo esperimento per verificare se il fenomeno dell’entanglement quantistico avesse effettivamente senso. Il test, denominato “disuguaglianza di Bell”, permette di verificare se il comportamento di due particelle dipenda da alcune condizioni iniziali nascoste. Secondo Bell, nessuna teoria fisica locale e deterministica a variabili nascoste può riprodurre le previsioni della meccanica quantistica. Se le misure violano la disuguaglianza di Bell, allora coppie di particelle possono fare ciò che vogliono in base ai principi della meccanica quantistica. Successivamente, a partire dagli anni ’80, vari esperimenti hanno trovato ripetutamente la violazione della disuguaglianza di Bell dando così ragione alla teoria dei quanti. Tuttavia, una serie di altri esperimenti convenzionali sulle disuguaglianze di Bell non hanno eliminato del tutto la speranza di contravvenire ai principi della relatività.

Alcuni test hanno già dimostrato che nel caso in cui si prendono in considerazione i segnali luminosi per descrivere i fenomeni fisici, si trova che essi dovrebbero propagarsi con una velocità superiore a quella della luce, addirittura con un fattore di dieci mila volte superiore. Ma questo crea un grosso problema per la teoria della relatività di Einstein dato che la velocità della luce rappresenta, come tutti sappiamo, una costante universale e quindi un limite invalicabile. Nonostante ciò, i fisici hanno trovato una scappatoia: tali segnali potrebbero rappresentare delle cosiddette “variabili nascoste” utili a nulla e perciò non violare i principi della relatività. Però, quando consideriamo il regime quantistico questa disuguaglianza si dimostra non vera. Ad esempio, per derivare la disuguaglianza di Bell nel caso dell’entanglement di quattro particelle, i ricercatori hanno considerato tutti i possibili comportamenti delle quattro particelle che sono connesse da certe variabili nascoste e che si muovono con velocità finite. Da un punto di vista matematico, queste variabili nascoste definiscono un sistema a 80 dimensioni. L’area di verificabilità della disuguaglianza di Bell è definita dal bordo sotteso dall’ombra in uno spazio a 44 dimensioni proiettata dal sistema a 80 dimensioni. I ricercatori hanno dimostrato che le previsioni della meccanica quantistica possono stare al di fuori di questa regione d’ombra il che vuol dire che si sta andando contro una delle assunzioni. In altre parole, al di fuori di questa regione, le variabili non possono rimanere più nascoste oppure devono essere dotate di una velocità infinita.

La domanda è: cosa succede se viene confermata la natura quantistica del nostro mondo? Cosa vuol dire? Abbiamo due scelte: la prima sembra sfidare la relatività e rendere visibili le variabili nascoste, il che implica accettare una comunicazione in cui i segnali luminosi si propagano con velocità superiori a quella della luce; la seconda vuole che le variabili nascoste siano infinitamente veloci oppure che debba esistere qualche processo che ha un effetto equivalente quando viene osservato nel nostro spaziotempo. Il test attuale non è in grado di fare la distinzione. Comunque sia, in entrambi i casi ciò implicherebbe che l’Universo sia fondamentalmente non locale nel senso che ogni bit di Universo può essere connesso istantaneamente ad ogni altro bit situato in un’altra parte dello spazio. Certamente si tratta di soluzioni estreme che vanno al di là del nostro senso comune ma sono preferibili al caso in cui la comunicazione tra due eventi avviene con una velocità superiore a quella della luce. Insomma, i risultati di questo esperimento rafforzano l’idea in base alla quale le correlazioni quantistiche soorgono in qualche modo al di fuori dello spaziotempo, nel senso che nessuna storia nello spazio e nel tempo può descriverle.

Press release: Lookingbeyondspace andtime tocope with quantum theory

J-D. Bancal, S. Pironio, A. Acín, Y-C. Liang, V. Scarani & N. Gisin (2012). Quantum non-locality based on finite-speed causal influences leads to superluminal signalling Nature Physics DOI: http://dx..org/10.1038/NPHYS2460

Jean-Daniel Bancal, Stefano Pironio, Antonio Acin, Yeong-Cherng Liang, Valerio Scarani, Nicolas Gisin (2012). Quantum nonlocality based on finite-speed causal influences leads to superluminal signaling Nature Physics arXiv: arXiv:1110.3795

Fonte: http://astronomicamens.wordpress.com/2012/10/29/un-esperimento-di-entanglement-quantistico-per-lo-studio-dello-spaziotempo/